4.5 Article

Multicolor Super-Resolution Fluorescence Imaging via Multi-Parameter Fluorophore Detection

期刊

CHEMPHYSCHEM
卷 13, 期 1, 页码 99-107

出版社

WILEY-BLACKWELL
DOI: 10.1002/cphc.201100735

关键词

fluorescence microscopy; fluorescent probes; multicolor imaging; photoswitchable fluorophores; super-resolution imaging

资金

  1. US National Institutes of Health
  2. European Molecular Biology Organization
  3. Agency for Science, Technology and Research of Singapore

向作者/读者索取更多资源

Understanding the complexity of the cellular environment will benefit from the ability to unambiguously resolve multiple cellular components, simultaneously and with nanometer-scale spatial resolution. Multicolor super-resolution fluorescence microscopy techniques have been developed to achieve this goal, yet challenges remain in terms of the number of targets that can be simultaneously imaged and the crosstalk between color channels. Herein, we demonstrate multicolor stochastic optical reconstruction microscopy (STORM) based on a multi-parameter detection strategy, which uses both the fluorescence activation wavelength and the emission color to discriminate between photo-activatable fluorescent probes. First, we obtained two-color super-resolution images using the near-infrared cyanine dye Alexa 750 in conjunction with a red cyanine dye Alexa 647, and quantified color crosstalk levels and image registration accuracy. Combinatorial pairing of these two switchable dyes with fluorophores which enhance photo-activation enabled multi-parameter detection of six different probes. Using this approach, we obtained six-color super-resolution fluorescence images of a model sample. The combination of multiple fluorescence detection parameters for improved fluorophore discrimination promises to substantially enhance our ability to visualize multiple cellular targets with sub-diffraction-limit resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据