4.5 Article

Multiple Charge-Separation Pathways in Photosystem II: Modeling of Transient Absorption Kinetics

期刊

CHEMPHYSCHEM
卷 12, 期 3, 页码 681-688

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.201000830

关键词

energy transfer; kinetics; photochemistry; photosynthesis; spectroscopic methods

资金

  1. Netherlands Organisation for Scientific Research (NWO) [040.11.207]
  2. Russian Foundation for Basic Research [09-04-00605]

向作者/读者索取更多资源

We explain the transient absorption kinetics (E. Romero, I. H. M. van Stokkum, V. I. Novoderezhkin, J. P. Dekker, R. van Grondelle, Biochemistry 2010, 49, 4300) measured for isolated reaction centers of photosystem II at 77 K upon excitation of the primary donor band (680 nm). The excited-state dynamics is modeled on the basis of the exciton states of 6 cofactors coupled to 4 charge-transfer (CT) states. One CT state (corresponding to charge separation within the special pair) is supposed to be strongly coupled with the excited states, whereas the other radical pairs are supposed to be localized. Relaxation within the strongly coupled manifold and transfer to localized CT's are described by the modified Redfield and generalized Forster theories, respectively. A simultaneous and quantitative fit of the 680, 545, and 460 nm kinetics (corresponding to respectively the Q(y) transitions of the red-most cofactors, Q(x) transition of pheophytin, and pheophytin anion absorption) enables us to define the pathways and time scales of primary electron transfer. A consistent modeling of the data is only possible with a Scheme where charge separation occurs from both the accessory chlorophyll and from the special pair, giving rise to fast and slow components of the pheophytin anion formation, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据