4.5 Article

Oxygen Reduction Reaction at Three-Phase Interfaces

期刊

CHEMPHYSCHEM
卷 11, 期 13, 页码 2825-2833

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.201000190

关键词

electrochemistry; interfaces; kinetics; oxygen reduction; Nafion-Pt three-phase interface

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science Division [DE-AC02-06CH11357]
  2. Argonne National Laboratory

向作者/读者索取更多资源

The kinetics of the oxygen reduction reaction (ORR) is studied at metal-supporting electrolyte-Nafion three-phase interfaces. We first demonstrate that the sulfonate anions of Nafion are specifically adsorbed on a wide range of surfaces ranging from Pt(hkl) single-crystal surfaces, Pt-poly, Pt-skin [produced on a Pt3Ni(111) surface by annealing in ultrahigh vacuum, UHV] to high-surface-area nanostructured thin-film (NSTF) catalysts. The surface coverage by sulfonate and the strength of the Pt-sulfonate interaction are strongly dependent on the geometry and the nature of the Pt surface atoms. Also, they are found to behave analogous to (bi)sulfate anion-specific adsorption on these surfaces, where for the Pt(hkl) surfaces, the trend is Pt(111) > Pt(110) > Pt(100) and for the Pt-skin surface on Pt3Ni(111), the interaction strength is found to be Pt-skin < Pt(111). We also found that irrespective of the surface orientation and/or the electronic properties of the surface atoms, the ORR is always inhibited by the presence of ionomers at the electrode surface, confirming that Nafion is not a non-adsorbing electrolyte. Finally, the knowledge gained from studying well-defined Pt(hkl) surfaces is applied to propose that deactivation of the ORR on Nafion-covered high-surface-area catalysts is also controlled by specific adsorption of sulfonate anions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据