4.5 Article

Effect of Osmolytes on Pressure-induced Unfolding of Proteins: A High-Pressure SAXS Study

期刊

CHEMPHYSCHEM
卷 9, 期 18, 页码 2809-2815

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.200800522

关键词

cosolvents; high-pressure chemistry; osmolytes; proteins; small-angle x-ray scattering

资金

  1. Deutsche Forschungsgemeinschaft [DFG FOR 436]
  2. U.S. department of energy [W-31-109-ENG-38]

向作者/读者索取更多资源

Herein, we explore the effect of different types of osmolytes on the high-pressure stability and tertiary structure of a well-characterized monomeric protein, staphylococcal nuclease (SNase). Changes in the denaturation pressure and the radius of gyration ore obtained in the presence of different concentrations of trimethylamine N-oxide (TMAO), glycerol and urea. To reveal structural changes in the protein upon compression at various osmolyte conditions, small-angle X-ray scattering (SAXS) experiments were carried out. To this end, a new high-pressure cell suitable for high-precision SAXS studies at synchrotron sources was built, which allows one to carry out scattering experiments up to maximum pressures of about 7 kbar. Our data clearly indicate that the osmolytes that stabilize proteins against temperature-induced unfolding drastically increase their pressure stability and that the elliptically shaped curve of the pressure-temperature-stability diagram of proteins is shifted to higher temperatures and pressures with increasing osmolyte concentration. A drastic stabilization is observed for the osmolyte TMAO, which exhibits not only a significant stabilization against temperature-induced unfolding, but also a particularly strong stabilization of the protein against pressure. In fact, such findings ore in accordance with in vivo studies (for example P. J. Yancey, J. Exp. Biol. 2005, 208, 2819-2830), where unusually high TMAO concentrations in some deep-sea animals were found. Conversely, chaotropic agents such as urea have a strong destabilizing effect on both the temperature and pressure stability of the protein. Our data also indicate that sufficiently high TMAO concentrations might be able to largely offset the destabilizing effect of urea. The different scenarios observed are discussed in the context of recent experimental and theoretical studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据