4.7 Article

Two-stage multi-fraction first-order kinetic modeling for soil Cd extraction by EDTA

期刊

CHEMOSPHERE
卷 211, 期 -, 页码 1035-1042

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2018.07.088

关键词

Metal extraction; Chelating agents; Metal species; Kinetic model

资金

  1. National Key R&D Program of China [2018YFD0800700]
  2. 111 Project [B18060]
  3. Shenzhen Municipal Science and Technology Plan Project [JCYJ20160519095007940]

向作者/读者索取更多资源

A two stage multi-fraction 1st-order kinetic model was established herein, which incorporates Cd species distribution in the contaminated site, chelate dosage and washing time, and two distinct extraction mechanisms are also emphasized there. The model was found to successfully simulate the experimental data of Cd extraction by EDTA; with the obtained parameters, we also got a similarly good agreement in other two Cd-contaminated soils. All normalized root-mean-square error, the index of agreement and modeling efficiency values showed that this model can be used to predict Cd kinetic extraction process in different types of soils with an excellent validity. Both simulated and experimental results indicate that a greater EDTA dosage reasonably leads to a higher Cd extraction efficiency and a faster extraction by the direct EDTA-complex. Different Cd species also show different extraction behavior. Part of Cd species associated with Fe/Mn hydro(oxides) (FeMnOx) become destabilized by slow EDTA-promoted dissolution but not yet detached, leading to an apparently high removal efficiency of Cd in FeMnOx fraction dependent on EDTA dosage. While the removal of exchangeable Cd and carbonates (EXCH+CARB) seemed unchanged with the EDTA dosage, due to the transformation of the undetached Cd in FeMnOx fractions. However, an extreme dosage (i.e. molar ratio of EDTA to metal equal to 20 herein) may accelerate the detachment of these destabilized Cd species, resulting in a substantially high extraction efficiency of EXCH+CARB fraction. (C) 2018 Published by Elsevier Ltd

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据