4.7 Article

Evaluating the fate and behaviour of cyclic volatile methyl siloxanes in two contrasting North American lakes using a multi-media model

期刊

CHEMOSPHERE
卷 91, 期 11, 页码 1566-1576

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2012.12.048

关键词

Cyclic volatile methyl siloxanes; Lake; Model; Fate

资金

  1. Centre Europeen des Silicones (CES)

向作者/读者索取更多资源

The behaviour of cyclic volatile methyl siloxanes (cVMS) in lakes was explored using a fugacity-based steady-state non-equilibrium multimedia fate and transport model (a modified version of QWASI). Three substances were investigated: Octamethylcyclotetrasiloxane (D4), Decamethylcyclopentasiloxane (D5) and Dodecamethylcyclohexasiloxane (D6) in two contrasting North American lakes: Lake Ontario and Lake Pepin (a natural shallow lake on the Mississippi river between Minnesota and Wisconsin). Values for the principal partition coefficients and the hydrolysis rate constant were adjusted for the mean annual temperatures of each lake. Hydrolysis rate constants were also adjusted for the fraction of chemical calculated to be in the freely dissolved phase. Half-lives in sediment were calculated from partitioning theory, assuming hydrolysis can occur only in the dissolved phase. Best estimates of substance-specific emissions were obtained by combining current per capita approximations of usage and fraction lost to domestic waste water, the population of the lake catchment and cVMS removal in waste water treatment. Concentrations were generally lower and chemical residence times longer in Lake Ontario than in Like Pepin, owing to greater depth, a higher hydraulic retention time and a higher degree of dilution. Overall persistence in Lake Pepin is significantly influenced by the high rate of sediment burial assumed in the model, as well as by a relatively high rate of water discharge. Despite the many similarities of the compounds considered, the dominant loss mechanisms vary significantly and are not the same in each lake system. This highlights the pitfalls of subjective evaluation of chemical fate and illustrates the important role which models have to play in providing a quantitative framework for assessing chemical behaviour objectively under the influence of a complex and interacting set of factors. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据