4.7 Article

Beyond selectivity: Are behavioral avoidance and hormesis likely causes of pyrethroid-induced outbreaks of the southern red mite Oligonychus ilicis?

期刊

CHEMOSPHERE
卷 93, 期 6, 页码 1111-1116

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2013.06.030

关键词

Ecological backlash; Secondary pest outbreaks; Insecticide susceptibility; Insecticide-induced hormesis; Insecticide selectivity; Integrated pest management

资金

  1. Minas Gerais State Foundation of Research Aid
  2. CAPES Foundation
  3. National Council for Scientific and Technological Development

向作者/读者索取更多资源

Secondary pest outbreak is a counterintuitive ecological backlash of pesticide use in agriculture that takes place with the increase in abundance of a non-targeted pest species after pesticide application against a targeted pest species. Although the phenomenon was well recognized, its alternative causes are seldom considered. Outbreaks of the southern red mite Oligonychus ilicis are frequently reported in Brazilian coffee farms after the application of pyrethroid insecticides against the coffee leaf miner Leucoptera coffeella. Selectivity favoring the red mite against its main predatory mites is generally assumed as the outbreak cause, but this theory has never been tested. Here, we assessed the toxicity (and thus the selectivity) of deltamethrin against both mite species: the southern red mite and its phytoseiid predator Amblyseius herbicolus. Additionally, behavioral avoidance and deltamethrin-induced hormesis were also tested as potential causes of red mite outbreak using free-choice behavioral walking bioassays with the predatory mite and life-table experiments with both mite species, respectively. Lethal toxicity bioassays indicated that the predatory mite was slightly more susceptible than its prey (1.5x), but in more robust demographic bioassays, the predator was three times more tolerant to deltamethrin than its prey, indicating that predator susceptibility to deltamethrin is not a cause of the reported outbreaks. The predator did not exhibit behavioral avoidance to deltamethrin; however insecticide-induced hormesis in the red mite led to its high population increase under low doses, which was not observed for the predatory mite. Therefore, deltamethrin-induced hormesis is a likely cause of the reported red mite outbreaks. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据