4.7 Article

Urinary and serum metabolites of di-n-pentyl phthalate in rats

期刊

CHEMOSPHERE
卷 82, 期 3, 页码 431-436

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2010.09.052

关键词

Di-n-pentyl phthalate (DPP); Mono-n-pentyl phthalate (MPP); MHPP; Biomarkers; Exposure assessment; Oxidative metabolism

向作者/读者索取更多资源

Di-n-pentyl phthalate (DPP) is used mainly as a plasticizer in nitrocellulose. At high doses. DPP acts as a potent testicular toxicant in rats. We administered a single oral dose of 500 mg kg(-1) bw of DPP to adult female Sprague-Dawley rats (N = 9) and collected 24-h urine samples 1 d before and 24- and 48-h after DPP was administered to tentatively identify DPP metabolites that could be used as exposure biomarkers. At necropsy, 48 h after dosing, we also collected serum. The metabolites were extracted from urine or serum, resolved with high performance liquid chromatography, and detected by mass spectrometry. Two DPP metabolites, phthalic acid (PA) and mono(3-carboxypropyl) phthalate (MCPP), were identified by using authentic standards, whereas mono-n-pentyl phthalate (MPP), mono(4-oxopentyl) phthalate (MOPP), mono(4-hydroxypentyl) phthalate (MHPP), mono(4-carboxybutyl) phthalate (MCBP), mono(2-carboxyethyl) phthalate (MCEP), and mono-n-pentenyl phthalate (MPeP) were identified based on their full scan mass spectrometric fragmentation pattern. The omega - 1 oxidation product, MHPP, was the predominant urinary metabolite of DPP. The median urinary concentrations (mu g mL(-1)) of the metabolites in the first 24 h urine collection after DPP administration were 993 (MHPP), 168 (MCBP), 0.2 (MCEP), 222 (MPP), 47 (MOPP), 26 (PA), 16 (MPeP), and 9 (MCPP): the concentrations of metabolites in the second 24 h urine collection after DPP administration were significantly lower than in the first collection. We identified some urinary metabolic products in the serum, but at much lower levels than in urine. Because of the similarities in metabolism of phthalates between rats and humans, based on our results and the fact that MHPP can only be formed from the metabolism of DPP, MHPP would be the most adequate DPP exposure biomarker for human exposure assessment. Nonetheless, based on the urinary levels of MHPP, our preliminary data suggest that human exposure to DPP in the United States is rather limited. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据