4.7 Article

Study of the toxicity of diuron and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process electro-Fenton

期刊

CHEMOSPHERE
卷 73, 期 9, 页码 1550-1556

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2008.07.082

关键词

Diuron; Toxicity; Hydroxyl radicals; Electro-Fenton process; Oxidation products; Microtox

向作者/读者索取更多资源

Diuron (N'-[3,4-dichlorophenyl]-N,N-dimethylurea) is a herbicide belonging to the phenylurea family, widely used to destroy weeds on uncultivated surfaces. Because of its toxicity for aquatic organisms and suspicion of being carcinogenic for humans, diuron is the object of growing environmental concern. Therefore, we have developed the electro-Fenton method, an electrochemical advanced oxidation process (EAOP), to degrade diuron in aqueous medium, and we have studied the evolution of the toxicity of treated solution during the process. Indeed, the EAOPs catalytically generate hydroxyl radicals that oxidize the persistent organic pollutants, and can ultimately destroy and mineralize them. But, sometimes, relatively toxic organic metabolites are formed during the oxidation reaction. In this work, the evolution of toxicity of diuron aqueous solutions was studied at different initial concentrations, during treatment by the electro-Fenton method. Samples were collected at various electrolysis times and mineralization degrees during the treatment. The toxicity of the samples was measured using the bacteria Vibrio fischeri (Microtox) and the green alga Scenedesmus obliquus. Our results demonstrated that the toxicity of diuron aqueous solutions (concentrations = 3.0-27.6 mg L-1) varied considerably with time. The formation and disappearance of several metabolites, having toxicity often stronger than that of the initial herbicide, were observed. To improve the efficiency of water decontamination, the electro-Fenton method should be applied during a time long enough (several hours) and at relatively high electrolysis current (I = 250 mA) to reach a nearly complete mineralization of the herbicide in the aqueous medium. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据