4.6 Article

The Role of the Reactor Wall in Hydrothermal Biomass Conversions

期刊

CHEMISTRY-AN ASIAN JOURNAL
卷 7, 期 11, 页码 2638-2643

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/asia.201200556

关键词

biomass; formic acid; high temperature and pressure water; reactor wall; reduction

资金

  1. Australian Research Council [DP0987166, FT0990485]
  2. Australian Research Council [DP0987166, FT0990485] Funding Source: Australian Research Council

向作者/读者索取更多资源

The processing of renewable feedstocks to platform chemicals and, to a lesser degree, fuels is a key part of sustainable development. In particular, the combination of lignocellulosic biomass with hydrothermal upgrading (HTU), using high temperature and pressure water (HTPW), is experiencing a renaissance. One of the many steps in this complicated process is the in-situ hydrogenation of intermediate compounds. As formic acid and related low-molecular-weight oxygenates are among the species generated, it is conceivable that they act as a hydrogen source. Such hydrogenations have been suggested to be catalyzed by water, by bases like NaOH, and/or to involve reactive/nascent hydrogen. To achieve the temperatures and pressures required for HTU, it is necessary to conduct the reactions in high-pressure vessels. Metals are typical components of their walls and/or internal fittings. Here, using cyclohexanone as a model compound for more complex biomass-derived molecules, iron in the wall of high-pressure stainless steel reactors is shown to be responsible for the hydrogenation of ketones with low-molecular-weight oxygenates acting as a hydrogen source in combination with water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据