4.6 Article

Solution-Processed Bulk-Heterojunction Photovoltaic Cells Based on Dendritic and Star-Shaped D-pi-A Organic Dyes

期刊

CHEMISTRY-AN ASIAN JOURNAL
卷 5, 期 6, 页码 1455-1465

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/asia.200900686

关键词

conducting materials; dendrimers; molecular devices; molecular electronics; photophysics

资金

  1. Ministry of Science and Technology [2009CB623601, 2006CB921602]
  2. National Natural Science Foundation of China

向作者/读者索取更多资源

A series of D-pi-A organic dendritic and star-shaped molecules based on three various chromophores (i.e., the truxene nodes, triphenylamine moieties as the donor, and benzothiadiazole chromophore as the acceptor) and their corresponding model compounds are facilely developed. Their photophysical and electrochemical properties are investigated in detail by UV/Vis absorption and photoluminescent spectroscopy, and cyclic voltammetry. By changing the various conjugated spacers (i.e., single bond, double bond, and triple bond) among the three chromophores of dendritic series, their photophysical properties (that is, the one-photon absorption range and two-photon absorption cross-section values) are effectively modulated. All D-pi-A conjugated oligomers show a broad and strong absorption band from 250 to 700 nm in thin films. Solution-processed bulk-heterojunction photovoltaic devices using our oligomer as donor and PCBM as acceptor are fabricated and measured. The power conversion efficiency of the devices based on our oligomers continuously increases from DBTTr to TrTD2A as a result of an increasing relative absorption intensity in longer wavelength region by changing the donor-acceptor ratio and conjugated spacers between the donor and acceptor. The power conversion efficiency of the devices based on TrTD2A was 0.54% under the illumination of AM 1.5 and 100 mW cm(-2), which is the highest value recorded based on D-pi-A conjugated oligomers containing triphenylamine moieties and benzothiadiazole chromophores with truxene to date.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据