4.6 Article

Light-Induced Spin Transitions in Copper-Nitroxide-Based Switchable Molecular Magnets: Insights from Periodic DFT plus U Calculations

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 24, 期 71, 页码 18988-18997

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201803962

关键词

density functional calculations; exchange interactions; LIESST: spin crossover; light-induced spin transitions; switchable magnetic materials

资金

  1. Ministerio de Economia y Competitividad (Spain) [CTQ2015-69019-P]
  2. FEDER funds [CTQ2015-69019-P]
  3. VPPI-US
  4. Red EspaCola de Supercomputacion (RES) [QCM-2017-3-0033]

向作者/读者索取更多资源

The electronic structure and magnetic interactions of three members of the breathing crystal Cu(hfac)(2)L-R family (hfac=hexafluoroacetylacetonato, L-R=pyrazole-substituted nitronyl nitroxides with R=Me, Et, Pr, iPr, Bu ), mainly Cu(hfac)(2)L-Pr (1), Cu(hfac)(2)L-Bu center dot 0.5 C8H18 (2) and Cu(hfac)(2)L-Bu 0.5 C8H10 (3), have been analyzed by means of periodic plane-wave based DFT+U calculations. These Cu-II-nitroxide based molecular magnets display thermally and optically induced switchable behavior and light-induced excited spin state trapping phenomena. The calculations confirm the presence of temperature-dependent exchange interaction within the spin triads formed by the nitroxide-copper(II)-nitroxide units, in line with the changes observed in the effective magnetic moment. Moreover, they quantify the interchain interaction mediated by the terminal nitroxide group of two spin triads in neighboring polymer chains. This interaction competes with the exchange interaction within the spin triads at high temperature, and introduces 1D exchange channels that do not coincide with the polymeric chains. The density of states reveal that the low-lying conduction states potentially involved in the UV/Vis transitions are located on the nitroxide radicals, the hfac groups and the Cu atoms. Then, the density of states is almost independent of the solvent and the R group. This suggests the possibility of light-induced spin switching for other members of this family. The 500 nm band of the low-temperature phase can be ascribed to a ligand-to-metal charge transfer transition between the nitroxide and Cu bands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据