4.6 Article

Superbasic Alkyl-Substituted Bisphosphazene Proton Sponges: Synthesis, Structural Features, Thermodynamic and Kinetic Basicity, Nucleophilicity and Coordination Chemistry

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 20, 期 25, 页码 7670-7685

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201402226

关键词

ab initio calculations; basicity; N ligands; phosphazenes

资金

  1. Fonds der Chemischen Industrie
  2. Deutsche Forschungsgemeinschaft

向作者/读者索取更多资源

Herein we describe an easily accessible class of superbasic proton sponges based on the 1,8-bisphosphazenylnaphthalene (PN) proton pincer motif and P-alkyl substituents ranging from methyl (TMPN) to n-butyl (TBPN), isopropyl (TiPrPN) and cyclopentyl (TcyPPN). These neutral bases with a pK(BH)(+) value (MeCN) of similar to 30 were accessible via a Kirsanov condensation using commercially available 1,8-diaminonaphthalene, and in case of TMPN and TBPN, simple one-pot procedures starting from trisalkylphosphanes can be performed. Furthermore, the known pyrrolidinyl-substituted superbase TPPN previously synthesized via a Staudinger reaction could also be prepared by the Kirsanov strategy allowing its preparation in a larger scale. The four alkyl-substituted proton sponges were structurally characterized in their protonated form; molecular XRD structures were also obtained for unprotonated TiPrPN and TcyPPN. Moreover, we present a detailed description of spectroscopic features of chelating bisphosphazenes including TPPN and its hyperbasic homologue P-2-TPPN on which we reported recently. The four alkyl-substituted superbases were investigated with respect to their basic features by computational means and by NMR titration experiments revealing unexpectedly high experimental pK(BH)(+) values in acetonitrile between 29.3 for TMPN and 30.9 for TBPN. Besides their thermodynamic basicity, we exemplarily studied the kinetic basicity of TMPN and TPPN by means of NMR-spectroscopic methods. Furthermore, the competing nucleophilic versus basic properties were examined by reacting the proton sponges with ethyl iodide. Insight into the coordination chemistry of chelating superbases was provided by reacting TMPN with trimethylaluminum and trimethylgallium to give cationic complexes of Group XIII metal alkyls that were structurally characterized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据