4.6 Article

Effect of Central Metal Ions of Analogous Metal-Organic Frameworks on Adsorption of Organoarsenic Compounds from Water: Plausible Mechanism of Adsorption and Water Purification

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 21, 期 1, 页码 347-354

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201404658

关键词

adsorption; arsenic; iron; metal-organic frameworks; water purification

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2013R1A2A2A01007176]
  2. National Research Foundation of Korea [2013R1A2A2A01007176] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The adsorptive removal of organoarsenic compounds such as p-arsanilic acid (ASA) and roxarsone (ROX) from water using metal-organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL-100-Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL-100-Fe is also much more rapid than that over activated carbon. Moreover, the used MIL-100-Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL-100-Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL-100 species (MIL-100-Fe, rather than MIL-100-Al or MIL-100-Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL-100-Fe, different from other analogous MIL100 species, can be explained (through calculations) by the facile desorption of water from MIL-100-Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL-100-Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据