4.6 Article

Transition-Metal-Ion-Mediated Polymerization of Dopamine: Mussel-Inspired Approach for the Facile Synthesis of Robust Transition-Metal Nanoparticle-Graphene Hybrids

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 20, 期 25, 页码 7776-7783

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201402241

关键词

catalysis; dopamines; graphene; hybrid materials; transition metals

向作者/读者索取更多资源

Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni2+-dopamine system to investigate the polymerization mechanism. The results show that the Ni2+ ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni2+ ions are chelated with polydopamine (PDA) units, forming homogeneous Ni2+-PDA complexes. This facile one-pot approach is utilized to construct transition-metal-ion-PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well-dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA-derived thin graphitic carbon layers. The nickel-graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p-nitrophenol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据