4.6 Article

Sulfur Species in Graphene Oxide

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 19, 期 29, 页码 9490-9496

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201300387

关键词

graphene oxide; IR spectroscopy; organosulfate; sulfur; thermogravimetry

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [SFB 953]
  2. European Research Council (ERC) [246622 - GRAPHENOCHEM]
  3. Cluster of Excellence 'Engineering of Advanced Materials (EAM)'

向作者/读者索取更多资源

The structure of graphene oxide (GO) is of crucial importance for its chemical functionalization. However, the sulfur content present in GO prepared by Hummers' method has only been addressed by a few authors so far. It has been reported that hydrolysis of sulfur species takes place and that stable sulfonic groups are present in graphite oxide. In this manuscript, in contrast to earlier reports, sulfate species are identified that are covalently bound to GO and still present after extensive aqueous work-up. Additionally, we exclude the possibility that sulfonic groups are present in GO as major species after aqueous work up. Our results are based on bulk characterization of graphene oxide by thermogravimetry and subsequent analysis of the decomposition products using mass spectroscopy and infrared spectroscopy. Up to now, the combustion temperature between 200 and 300 degrees C remained almost unaddressed. In a temperature dependant experiment we reveal two main decomposition steps that differ in temperature and that are closely related to the sulfur species in GO. While the decomposition, between 200 and 300 degrees C, is related to the degradation of organosulfate, the other one, between 700 and 800 degrees C, is assigned to the pyrolysis of inorganic sulfate. Furthermore, organosulfate is to some extent responsible for the reactivity of GO. Therefore, the structural model of GO was extended by adding organosulfate in addition to epoxy and hydroxyl groups, which are predominantly covalently bound above and below the carbon skeleton. Furthermore, the identification of organosulfate groups beneath epoxy groups makes new molecular architectures feasible and can be used to explain the properties of GO in various applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据