4.6 Article

How Cations Change Peptide Structure

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 19, 期 34, 页码 11224-11234

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201204554

关键词

density-functional calculations; hydrogen bonds; IR spectroscopy; protein folding; protein structures

向作者/读者索取更多资源

Abstract Specific interactions between cations and proteins have a strong impact on peptide and protein structure. Herein, we shed light on the nature of the underlying interactions, especially regarding effects on the polyamide backbone structure. This was done by comparing the conformational ensembles of model peptides in isolation and in the presence of either Li+ or Na+ by using state-of-the-art density-functional theory (including van der Waals effects) and gas-phase infrared spectroscopy. These monovalent cations have a drastic effect on the local backbone conformation of turn-forming peptides, by disruption of the hydrogen-bonding networks, thus resulting in severe distortion of the backbone conformations. In fact, Li+ and Na+ can even have different conformational effects on the same peptide. We also assess the predictive power of current approximate density functionals for peptide-cation systems and compare to results with those of established protein force fields as well as high-level quantum chemistry calculations (CCSD(T)).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据