4.6 Article

Zeolitic Imidazolate Framework (ZIF)-Derived, Hollow-Core, Nitrogen-Doped Carbon Nanostructures for Oxygen-Reduction Reactions in PEFCs

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 19, 期 28, 页码 9335-9342

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201300145

关键词

doping; electrochemistry; metal-organic frameworks; nanostructures; oxygen-reduction reaction

资金

  1. Council of Scientific and Industrial Research (CSIR), New Delhi [CSC0122]
  2. CSIR
  3. UGC

向作者/读者索取更多资源

The facile synthesis of a porous carbon material that is doped with iron-coordinated nitrogen active sites (FeNC-70) is demonstrated by following an inexpensive synthetic pathway with a zeolitic imidazolate framework (ZIF-70) as a template. To emphasize the possibility of tuning the porosity and surface area of the resulting carbon materials based on the structure of the parent ZIF, two other ZIFs, that is, ZIF-68 and ZIF-69, are also synthesized. The resulting active carbon material that is derived from ZIF-70, that is, FeNC-70, exhibits the highest BET surface area of 262m2g-1 compared to the active carbon materials that are derived from ZIF-68 and ZIF-69. The HR-TEM images of FeNC-70 show that the carbon particles have a bimodal structure that is composed of a spherical macroscopic pore (about 200nm) and a mesoporous shell. X-ray photoelectron spectroscopy (XPS) reveals the presence of Fe-N-C moieties, which are the primary active sites for the oxygen-reduction reaction (ORR). Quantitative estimation by using EDAX analysis reveals a nitrogen content of 14.5wt.%, along with trace amounts of iron (0.1wt.%), in the active FeNC-70 catalyst. This active porous carbon material, which is enriched with Fe-N-C moieties, reduces the oxygen molecule with an onset potential at 0.80V versus NHE through a pathway that involves 3.3-3.8e- under acidic conditions, which is much closer to the favored 4e- pathway for the ORR. The onset potential of FeNC-70 is significantly higher than those of its counterparts (FeNC-68 and FeNC-69) and of other reported systems. The FeNC-based systems also exhibit much-higher tolerance towards MeOH oxidation and electrochemical stability during an accelerated durability test (ADT). Electrochemical analysis and structural characterizations predict that the active sites for the ORR are most likely to be the insitu generated NFeN2+2/C moieties, which are distributed along the carbon framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据