4.6 Article

Iron Borohydride Pincer Complexes for the Efficient Hydrogenation of Ketones under Mild, Base-Free Conditions: Synthesis and Mechanistic Insight

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 18, 期 23, 页码 7196-7209

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201200159

关键词

density functional calculations; homogeneous catalysis; hydrogenation; iron; pincer ligands

资金

  1. European Research Council (ERC) [246837]
  2. MINERVA Foundation
  3. Deutsche Forschungsgemeinschaft (DFG)

向作者/读者索取更多资源

The new, structurally characterized hydrido carbonyl tetrahydridoborate iron pincer complex [(iPr-PNP)Fe(H)(CO)(?1-BH4)] (1) catalyzes the base-free hydrogenation of ketones to their corresponding alcohols employing only 4.1 atm hydrogen pressure. Turnover numbers up to 1980 at complete conversion of ketone were reached with this system. Treatment of 1 with aniline (as a BH3 scavenger) resulted in a mixture of trans-[(iPr-PNP)Fe(H)2(CO)] (4?a) and cis-[(iPr-PNP)Fe(H)2(CO)] (4?b). The dihydrido complexes 4?a and 4?b do not react with acetophenone or benzaldehyde, indicating that these complexes are not intermediates in the catalytic reduction of ketones. NMR studies indicate that the tetrahydridoborate ligand in 1 dissociates prior to ketone reduction. DFT calculations show that the mechanism of the iron-catalyzed hydrogenation of ketones involves alcohol-assisted aromatization of the dearomatized complex [(iPr-PNP*)Fe(H)(CO)] (7) to initially give the Fe0 complex [(iPr-PNP)Fe(CO)] (21) and subsequently [(iPr-PNP)Fe(CO)(EtOH)] (38). Concerted coordination of acetophenone and dual hydrogen-atom transfer from the PNP arm and the coordinated ethanol to, respectively, the carbonyl carbon and oxygen atoms, leads to the dearomatized complex [(iPr-PNP*)Fe(CO)(EtO)(MeCH(OH)Ph)] (32). The catalyst is regenerated by release of 1-phenylethanol, followed by dihydrogen coordination and proton transfer to the coordinated ethoxide ligand.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据