4.6 Article

An Isoreticular Family of Microporous Metal-Organic Frameworks Based on Zinc and 2-Substituted Imidazolate-4-amide-5-imidate: Syntheses, Structures and Properties

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 18, 期 37, 页码 11630-11640

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201200889

关键词

adsorption; metal- organic frameworks; microporous materials; N; O ligands; zinc

资金

  1. Deutsche Forschungsgemeinschaft [SPP-1362]

向作者/读者索取更多资源

We report on a new series of isoreticular frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate (IFP-14, IFP=imidazolate framework Potsdam) that form one-dimensional, microporous hexagonal channels. Varying R in the 2-substitued linker (R=Me (IFP-1), Cl (IFP-2), Br (IFP-3), Et (IFP-4)) allowed the channel diameter (4.01.7 angstrom), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP-2, IFP-3 and IFP-4 are isostructural to previously reported IFP-1. The structures of IFP-2 and IFP-3 were solved by X-ray crystallographic analyses. The structure of IFP-4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and 1H MAS and 13C CP-MAS NMR spectroscopy. All IFPs showed high thermal stability (345400?degrees C); IFP-1 and IFP-4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO2 was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH4 (at 298 K), CO2 (at 298 K) and H2 (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO2 is physisorbed on IFP-14 under dry conditions and that both CO2 and H2O are physisorbed on IFP-1 under moist conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据