4.6 Article

Multiporphyrin Arrays on Cyclophosphazene Scaffolds: Synthesis and Studies

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 18, 期 28, 页码 8835-8846

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201200273

关键词

cyclophosphazenes; metalation; multiporphyrin arrays; NMR spectroscopy; porphyrinoids

资金

  1. Board of Research in Nuclear Sciences (BRNS)
  2. Department of Science and Technology (DST)
  3. IIT-Bombay

向作者/读者索取更多资源

The stable and robust cyclotriphosphazene and cyclotetraphosphazene rings were used as scaffolds to prepare hexa- and octaporphyrin arrays by treating N3P3Cl6 and N4P4Cl8, respectively, with 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl)porphyrin (N4 core) or with its thiaporphyrin analogues (N3S and N2S2 cores) in THF in the presence of Cs2CO3 under simple reaction conditions. Thiaporphyrins were examined in addition to the normal porphyrin to tune the electronic properties of the resultant arrays. Observation of the molecular ion peaks in the mass spectra confirmed the molecular structures of the arrays. 1D and 2D NMR techniques were employed to characterize the multiporphyrin arrays in detail. The 1H NMR spectra of the multiporphyrin arrays each show a systematic set of signals, indicating that the porphyrin units are arranged in a symmetrical fashion around the cyclophosphazene rings. All signals in the 1H NMR spectra were assigned with the aid of COSY and NOESY experiments. The protons of each porphyrin unit are subject to upfield and downfield shifts because of the ring-current effects of neighboring porphyrin units. Optical, electrochemical, and fluorescence studies of the arrays indicated that the porphyrin units retain their independent ground- and excited-state characteristics. CuII and NiII derivatives of hexaporphyrin and octaporphyrin arrays containing N4 porphyrin units and N3S porphyrin units were synthesized, and complete metalation of the arrays was confirmed by their mass spectra and by detailed NMR characterization of the NiII derivatives of hexa- and octaporphyrin arrays containing N4 porphyrin units. Electrochemical studies indicated that CuII and NiII ions present in the thiaporphyrin units of the arrays can be stabilized in the +1 oxidation state, which is not possible with arrays containing normal porphyrin units.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据