4.6 Article

Synthesis of Spin-Crossover Nano- and Micro-objects in Homogeneous Media

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 18, 期 32, 页码 9946-9954

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201201063

关键词

iron; nanoparticles; polymers; spin crossover; triazoles

资金

  1. CROSS-NANOMAT [ANR 2010-BLAN-0716]
  2. French Embassy in Ukraine

向作者/读者索取更多资源

New methods are proposed for the synthesis of spin-crossover nano- and micro-objects. Several nano-objects that are based upon the spin-crossover complex [Fe(hptrz)3](OTs)2 (hptrz=4-heptyl-1,2,4-triazole, Ts=para-toluenesulfonyl) were prepared in homogeneous media. The use of various reagents (Triton X-100, PVP, TOPO, and PEGs of different molecular weights) as stabilizing agents yielded materials of different size (6 nm2 mu m) and morphology (nanorods, nanoplates, small spherical particles, and nano- and micro-crystals). In particular, when Triton X-100 was used, a variation in the morphology from nanorods to nanoplates was observed by changing the nature of the solvent. Interestingly, the preparation of the nanorods and nanoplates was always accompanied by the formation of small spherical particles. Alternatively, when PEG was used, 200400 nm crystals of the complex were obtained. In addition, a very promising polymer-free synthetic method is discussed that was based on the preparation of relatively stable FeIItriazole oligomers in CHCl3. Their specific treatment led to micro-crystals, small nanoparticles, or gels. The size and morphology of all of these objects were characterized by TEM and by dynamic light scattering (DLS) where possible. Their spin-crossover behavior was studied by optical and magnetic measurements. The spin-transition features for large particles (>100 nm) were very similar to that of the bulk material, that is, close to room temperature with a hysteresis width of up to 8 K. The effects of the matrix and/or size-reduction led to modification of the transition temperature and an abruptness of the spin transition for oligomeric solutions and small nanoparticles of 6 nm in size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据