4.6 Article

Enzymatic Cascade Reactions inside Polymeric Nanocontainers: A Means to Combat Oxidative Stress

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 17, 期 16, 页码 4552-4560

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201002782

关键词

artificial organelles; enzyme catalysis; nanostructures; oxidative stress; self-assembly

资金

  1. Swiss National Science Foundation
  2. National Center of Competence in Nanoscale Science

向作者/读者索取更多资源

Oxidative stress, which is primarily due to an imbalance in reactive oxygen species, such as superoxide radicals, peroxynitrite, or hydrogen peroxide, represents a significant initiator in pathological conditions that range from arthritis to cancer. Herein we introduce the concept of enzymatic cascade reactions inside polymeric nanocontainers as an effective means to detect and combat superoxide radicals. By simultaneously encapsulating a set of enzymes that act in tandem inside the cavities of polymeric nanovesicles and by reconstituting channel proteins in their membranes, an efficient catalytic system was formed, as demonstrated by fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Superoxide dismutase and lactoperoxidase were selected as a model to highlight the combination of enzymes. These were shown to participate in sequential reactions in situ in the nanovesicle cavity, transforming superoxide radicals to molecular oxygen and water and, therefore, mimicking their natural behavior. A channel protein, outer membrane protein F, facilitated the diffusion of lactoperoxidase substrate/products and dramatically increased the penetration of superoxide radicals through the polymer membrane, as established by activity assays. The system remained active after uptake by THP-1 cells, thus behaving as an artificial organelle and exemplifying an effective approach to enzyme therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据