4.6 Article

Amplified Surface Plasmon Resonance Based DNA Biosensors, Aptasensors, and Hg2+ Sensors Using Hemin/G-Quadruplexes and Au Nanoparticles

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 17, 期 32, 页码 8904-8912

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201100601

关键词

aptamers; DNA; mercury; sensors; surface plasmon resonance

资金

  1. Israel Science Foundation

向作者/读者索取更多资源

Thiolated nucleic acid hairpin nanostructures that include in their stem region a caged G-quadruplex sequence, and in their single-stranded loop region oligonucleotide recognition sequences for DNA, adenosine monophosphate (AMP), or Hg2+ ions were linked to bare Au surfaces or to Au nanoparticles (NPs) linked to Au surfaces. The opening of the hairpin nanostructures associated with the bare Au surface by the complementary target DNA, AMP substrate, or Hg2+ ions, in the presence of hemin, led to the self-assembly of hemin/G-quadruplexes on the surface. The resulting dielectric changes on the surface exhibited shifts in the surface plasmon resonance (SPR) spectra, thus providing a read-out signal for the recognition events. A similar opening of the hairpin nanostructures, immobilized on the Au NPs associated with the Au surface, by the DNA, AMP, or Hg2+ led to an ultrasensitive SPR-amplified detection of the respective analytes. The amplification originated from the coupling between the localized surface plasmon associated with the NPs and the surface plasmon wave, an effect that cooperatively amplifies the SPR shifts that result from the formation of the hemin/G-quadruplexes. The different sensing platforms reveal impressive sensitivities and selectivities toward the target analytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据