4.6 Article

Probing the Dynamics of CO2 and CH4 within the Porous Zirconium Terephthalate UiO-66(Zr): A Synergic Combination of Neutron Scattering Measurements and Molecular Simulations

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 17, 期 32, 页码 8882-8889

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201003596

关键词

diffusion; metal-organic frameworks; molecular dynamics; neutron diffraction

资金

  1. European Community [FP7/2007-2013, 228862]

向作者/读者索取更多资源

Quasi-elastic neutron scattering (QENS) measurements combined with molecular dynamics (MD) simulations were conducted to deeply understand the concentration dependence of the self-and transport diffusivities of CH4 and CO2, respectively, in the humidity-resistant metal-organic framework UiO-66(Zr). The QENS measurements show that the self-diffusivity profile for CH4 exhibits a maximum, while the transport diffusivity for CO2 increases continuously at the loadings explored in this study. Our MD simulations can reproduce fairly well both the magnitude and the concentration dependence of each measured diffusivity. The flexibility of the framework implemented by deriving a new forcefield for UiO-66(Zr) has a significant impact on the diffusivity of the two species. Methane diffuses faster than CO2 over a broad range of loading, and this is in contrast to zeolites with narrow windows, for which opposite trends were observed. Further analysis of the MD trajectories indicates that the global microscopic diffusion mechanism involves a combination of intracage motions and jump sequences between tetrahedral and octahedral cages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据