4.6 Article

Graphene-Encapsulated Fe3O4 Nanoparticles with 3D Laminated Structure as Superior Anode in Lithium Ion Batteries

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 17, 期 2, 页码 661-667

出版社

WILEY-BLACKWELL
DOI: 10.1002/chem.201001348

关键词

electrochemistry; graphene; iron oxide; lithium ion batteries; nanoparticles

资金

  1. Australian Research Council (ARC) [DP 0987805]
  2. ARC Centre of Excellence
  3. International Linkage Project [CH090014]

向作者/读者索取更多资源

Fe3O4-graphene composites with three-dimensional laminated structures have been synthesised by a simple in situ hydrothermal method. From field-emission and transmission electron microscopy results, the Fe3O4 nanoparticles, around 3-15 nm in size, are highly encapsulated in a graphene nanosheet matrix. The reversible Li-cycling properties of Fe3O4-graphene have been evaluated by galvanostatic discharge-charge cycling, cyclic voltammetry and impedance spectroscopy. Results show that the Fe3O4-graphene nanocomposite with a graphene content of 38.0 wt% exhibits a stable capacity of about 650 mAh g(-1) with no noticeable fading for up to 100 cycles in the voltage range of 0.0-3.0 V. The superior performance of Fe3O4-graphene is clearly established by comparison of the results with those from bare Fe3O4. The graphene nanosheets in the composite materials could act not only as lithium storage active materials, but also as an electronically conductive matrix to improve the electrochemical performance of Fe3O4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据