4.6 Article

Acid-Base Controllable Recognition Properties of a Highly Versatile Calix[6]crypturea

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 16, 期 7, 页码 2159-2169

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200902792

关键词

calixarenes; host-guest systems; ion pairs; molecular switches; supramolecular chemistry

资金

  1. Agence Nationale de la Recherche [ANR-05-BLAN-0003]
  2. Bureau des Relations internationales

向作者/读者索取更多资源

Versatile concave receptors with binding properties that can be controlled by external stimuli are rare. Herein, we report on a calix[6]crypturea (1) that features two different binding sites in close proximity, that is, a tris(2-aminoethyl)amine (tren)-based tris-ureido cap that provides convergent hydrogen-bond-donor sites and a hydrophobic cavity suitable for the inclusion of organic guests. The binding properties of this heteroditopic receptor have been evaluated by NMR spectroscopic studies. Compound I behaves as a remarkably versatile host that strongly binds neutral molecules, anions, or contact ion pairs. Within each family of guests, compound 1 is able to discriminate between different guests with a high degree of selectivity. Indeed, neutral molecules that possess hydrogen-bond donor and acceptor groups, chloride anions, and linear ammonium ions associated to F- or Cl- are particularly well recognized. In comparison with all the related receptors, compound 1 displays several unique features: 1) charged or neutral species are also recognized in polar or protic solvents, 2) thanks to the flexibility of the calixarene structure, induced-fit processes allow the binding of large, biologically relevant ammonium salts such as neurotransmitters, and 3) the protonation of the basic cap leads to a positively charged receptor, 1.H+, which is reluctant to host anions and in which host properties are now governed by strong charge-dipole interactions with the guests. In other words, compound 1 presents an acid-base controllable tris-ureido recognition site protected by a hydrophobic corridor that can select guests through induced-fit processes. Thus, its versatile host properties can be allosterically controlled by protonation and selective guest-switching processes are possible. To illustrate all these remarkable features, a sophisticated three-pole supramolecular switch, based on the inter-conversion of host-guest systems displaying either charged or neutral guests, is described.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据