4.6 Review

Enhanced Electron-Transfer Properties of Cofacial Porphyrin Dimers through pi-pi Interactions

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 15, 期 13, 页码 3110-3122

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200802166

关键词

electron transfer; photochemistry; photosynthesis; redox chemistry; pi interactions

资金

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [19205019]
  2. Global COE program Global Education and Research Center for Bio-Environmental Chemistry of Osaka University
  3. CNRS [UMR 5260]

向作者/读者索取更多资源

The radical cation of zinc tetrapentylporphyrin is dimerized with an excess of the neutral counterpart to form the dimer radical cation in which the unpaired electron is delocalized over both porphyrin rings. The dimeric radical cation exhibits an NIR absorption spectrum characteristic of weak pi-bond formation between the porphyrin rings. When cofacial porphyrin dimers, linked by different spacers, are oxidized such pi-bond formation between the porphyrin rings is also recognized in cyclic voltammetry, and Vis/NIR and ESR spectroscopic measurements. The dynamics of photoinduced electron transfer from the triplet excited states of cofacial porphyrin dimers to a series of electron acceptors were investigated by using laser flash photolysis measurements and compared with the porphyrin monomer. The rates of photoinduced electron-transfer reactions of cofacial porphyrin dimers are prominently accelerated compared with the reference monomer. The driving-force dependence of the rate constants of photoinduced electron-transfer reactions was analyzed in light of the Marcus theory of electron transfer to afford the reorganization energies of electron transfer (lambda). The lambda values of cofacial porphyrin dimers are significantly smaller than those of the porphyrin monomer when compared at the same driving force of the photoinduced electron transfer. The lambda values increase linearly with an increase in the driving force of the photoinduced electron transfer. This is accompanied by an increase in the distance between electron donor and acceptor molecules, where the electron transfer occurs. The enhanced electron-transfer properties of cofacial porphyrin dimers, in relation with the important role of the special pair in the photosynthetic reaction center, result from the smaller reorganization energy (lambda) together with the larger driving force of the photoinduced electron transfer due to the pi-electron delocalization in the dimer radical cations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据