4.6 Article

Hydrophilic Interaction Chromatography Based Enrichment of Glycopeptides by Using Click Maltose: A Matrix with High Selectivity and Glycosylation Heterogeneity Coverage

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 15, 期 46, 页码 12618-12626

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200902370

关键词

analytical methods; glycopeptides; glycoproteins; mass spectrometry

资金

  1. National Natural Science Funds for Distinguished Young Scholar [20825518]
  2. National Science Foundation of China [20805046]

向作者/读者索取更多资源

Glycosylation analysis based on mass spectrometry (MS) of glycopeptides requires the isolation of glycopeptides from complex glycoprotein digests to facilitate structural determination of the glycopeptides. To this end, hydrophilic interaction chromatography (HILIC)-based methods have been developed to selectively enrich glycopeptides by utilizing the hydrophilicity of the glycans. However, the application of these methods is limited by the medium selectivity of HILIC matrices. To improve the effectiveness of HILIC-based methods, we introduced a customized hydrophilic matrix named click maltose and characterized its selectivity and glycosylation heterogeneity coverage. In the selectivity assessment, the non-glycopeptides causing ion suppression to the glycopeptides were effectively removed by click maltose, leading to the identification of 27 glycopeptides in the fractions enriched from human serum immunoglobulin G digest, compared to 13 glycopeptides enriched using Sepharose CL-6B, a commercially available matrix. For the assessment of glycosylation heterogeneity coverage, more than 140 glycopeptides covering all the five glycosites of human serum alpha(1)-acid glycoprotein were captured using click maltose. Click maltose was synthesized by linking alkynyl-derivatized maltose to azide-derivatized silica through click chemistry. The resulting flexible saccharide chain structure remarkably enhances the hydrogen-bonding interactions between the glycans of the glycopeptides and the matrix, which are responsible for the increased selectivity and glycosylation heterogeneity coverage of click maltose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据