4.6 Article

Anion-pi Slides for Transmembrane Transport

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 15, 期 1, 页码 28-37

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200801643

关键词

anion-pi interactions; cooperative phenomena; ion channels; ion selectivity; ion transport; quadrupole moments

资金

  1. University of Geneva
  2. Swiss NSF

向作者/读者索取更多资源

The recognition and transport of anions is usually accomplished by hydrogen bonding, ion pairing, metal coordination, and anion-dipole interactions. Here, we elaborate on the concept to use anion-pi interactions for this purpose. Different to the popular cation-pi interactions, applications of the complementary pi-acidic surfaces do not exist. This is understandable because the inversion of the aromatic quadrupole moment to produce pi-acidity is a rare phenomenon. Here, we suggest that pi-acidic aromatics can be linked together to produce an unbendable scaffold with multiple binding sites for anions to move along across a lipid bilayer membrane. The alignment of multiple anion-pi, sites is needed to introduce a cooperative multi-ion hopping mechanism. Experimental support for the validity of the concept comes from preliminary results with oligonaphthalenediimide (O-NDI) rods. Predicted by strongly positive facial quadrupole moments, the cooperativity and chloride selectivity found for anion transport by O-NDI rods were consistent with the existence of anion-pi slides. The proposed mechanism for anion transport is supported by DFT results for model systems, as well as MD simulations of rigid O-NDI rods. Applicability of anion-pi slides to achieve electroneutral photosynthesis is elaborated with the readily colorizable oligoperylenediimide (O-PDI) rods. To clarify validity, scope and limitations of these concepts, a collaborative research effort will be needed to address by computer modeling and experimental observations the basic questions in simple model systems and to design advanced multifunctional anion-pi architectures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据