4.6 Article

Efficient Air-Stable Organometallic Low-Molecular-Mass Gelators for Ionic Liquids: Synthesis, Aggregation and Application of Pyridine-Bridged Bis(benzimidazolylidene)-Palladium Complexes

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 15, 期 8, 页码 1853-1861

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200802116

关键词

aggregation; benzimidazolylidene complexes; ionic liquids; metallogels; palladium; sol-gel processes

资金

  1. DFG [SFB 624]

向作者/读者索取更多资源

Novel pincer-type, pyridine-bridged bis(benzimidazolylidene)-palladium complexes 5-7 were synthesised from cheap commercial precursors under microwave assistance. Although simple in structure, carbene complexes 5a,b are efficient low-molecular-mass metallogelators. They gelate not only a broad variety of protic and aprotic organic solvents, but also different types of customary ionic liquids (such as imidazolium, pyridinium, pyrazolidinium, piperidinium and ammonium salts) at concentrations as low as 0.5 mg mL(-1). The morphologies of the resulting 3D gel networks composed from long and thin fibres were studied by TEM and light microscopy for a selection of organic and ionic liquids. The achiral gelators are able to induce the formation of helical fibres. The thermal stability of the gel samples increases with the gelator concentration as demonstrated by thermo reversible DSC studies. Temperature-dependent NMR and X-ray diffraction studies, as well as comparisons with pincer complex analogues bearing shorter alkyl chains, suggest that the 3D networks responsible for gelation are based on non-covalent interactions, such as pi-stacking, van der Waals interactions, and hydrogen and metal-metal bonding. Ionic liquids and gels obtained from them and 5a,b display comparable high conductivities, which characterises pyridine-bridged bis(benzimidazolylidene)-palladium pincer complexes as air-stable metallo gelators that efficiently immobilise ionic liquids in low gelator concentration indicating-beyond catalysis-their potential applications in electrochemical devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据