4.6 Review

Minerals as Molecules-Use of Aqueous Oxide and Hydroxide Clusters to Understand Geochemical Reactions

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 15, 期 18, 页码 4496-4515

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200802636

关键词

geochemistry; kinetics; mineralogy; polyoxometalates; reaction mechanisms; water chemistry

资金

  1. National Science Foundation [EAR 05015600, EAR-0814242]
  2. U.S. Department of Energy, Office of Basic Energy Research [DE-FG02-05ER15693, DE-FG02-04ER15498]
  3. Australian Academy of Sciences
  4. Directorate For Geosciences [0814242] Funding Source: National Science Foundation

向作者/读者索取更多资源

Geochemists and environmental chemists make predictions about the fate of chemicals in the shallow earth over enormously long times. Key to these predictions is an understanding of the hydrolytic and complexation reactions at oxide mineral surfaces that are difficult to probe spectroscopically. These minerals are usually oxides with repeated structural motifs, like silicate or aluminosilicate polymers, and they expose a relatively simple set of functional groups to solution. The geochemical community is at the forefront of efforts to describe the surface reactivities of these interfacial functional groups and some insights are being acquired by using small oligomeric oxide molecules as experimental models. These small nanometer-size clusters are not minerals, but their Solution structures and properties are better resolved than for minerals and calculations are relatively well constrained. The primary experimental data are simple rates of steady oxygen-isotope exchanges into the structures as a function of solution composition that can be related to theoretical results. There are only a few classes of large oxide ions for which data have been acquired and here we review examples and illustrate the general approach, which also derives directly from the use of model clusters to understand for the active core of metalloenzymes in biochemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据