4.6 Article

Luminescent excited-state intramolecular proton-transfer (ESIPT) dyes based on 4-alkyne-functionalized [2,2 '-bipyridine]-3,3 '-diol dyes

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 14, 期 14, 页码 4381-4392

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200701803

关键词

alkynes; excited states; fluorescence; luminescence; Zn complexes

向作者/读者索取更多资源

Functionalized 6,6'-dimethyl-3,3'-dihydroxy-2,2'-bipyridine dyes (BP(OH)(2)) exhibit relatively intense fluorescence from the relaxed excited state formed by excited-state intramolecular proton transfer (ESIPT). Bromo functionalization of (BP(OH)(2)) species followed by palladium (0)-catalyzed reactions allows the connection (via alkyne tethers) of functional groups, such as the singlet-emitter diazaboraindacene (bodipy) group or a chelating module (terpyridine; terpy). The X-ray structure of the terpy-based compound confirms the planarity of the 3,3'-dihydroxy-bipyridine unit. The new dyes exhibit relatively intense emission on the nanosecond timescale when in fluid solution, in the solid state at 298 K, and in rigid glasses at 77 K. In some cases, the excitation wavelength luminescence was observed and attributed to 1) inefficiency of the ESIPT process in particular compounds when not enough vibrational energy is introduced in the Franck-Condon state, which is populated by direct light excitation or 2) the presence of an additional excited state that deactivates to the ground state without undergoing the ESIPT process. For some selected species, the effect of the addition of zinc salts on the absorption and luminescence spectra was investigated. In particular, significant fluorescence changes were observed as a consequence of probable consecutive formation of a 1:1 and 1:2 molecular ratio of ligand/zinc adducts owing to coordination of Zn-II ions by the bipyridyldiol moieties, except when an additional terpyridine subunit is present. In fact, this latter species preferentially coordinates to the Zn-II ion in a 1:1 molecular ratio and further inhibits Zn-II interaction. In the hybrid Bodipy/BP(OH)(2) species, complete energy transfer from the BP(OH)(2) to the bodipy fluorophore occurs, leading to exclusive emission from the lowest-lying bodipy subunit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据