4.8 Article

A Highly Conductive and Mechanically Robust OH- Conducting Membrane for Alkaline Water Electrolysis

期刊

CHEMISTRY OF MATERIALS
卷 30, 期 18, 页码 6420-6430

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.8b02709

关键词

-

资金

  1. National Science Foundation (NSF) Centers for Chemical Innovation (CCI) Solar Fuels Program [CHE-1305124]

向作者/读者索取更多资源

In an alkaline water electrolysis cell, a membrane is needed between the cathode and the anode to avoid mixing of hydrogen and oxygen products while enabling OH- transport. Hydroxide ion conductivity and membrane mechanical properties are both important parameters that determine material constraints on low electrical resistance of a membrane versus sufficient structural integrity. Herein, we demonstrate a strategy to make membranes with both high OH- conductivity and mechanical strength. A chemically tailored OH- conducting polymer (qPPO) was synthesized via amination and subsequent quaternization of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and was blended with poly(vinyl alcohol) (PVA) to provide an environment analogous to basic water solutions. The -OH groups in PVA provide high-density Grotthuss mechanism conduction sites similar to water, which may be the key reason for the observed high OH- conductivity of the membranes. The PVA backbone was cross-linked to form a semi-interpenetrating network (semi-IPN) of PVA and qPPO; the resulting material contains PVA chemical cross-links and hydrogen bonds between PVA and qPPO and between PVA with itself, all of which are believed to contribute to a high tensile strength. By tuning the PVA/qPPO ratio, the transport and mechanical properties were optimized. The membrane with 30% qPPO possesses both extraordinary conductivity (151 mS/cm at room temperature)-about 2.7 times as high as Nafion 117 in acidic conditions-and high ultimate tensile strength (126 MPa (dry), 41 MPa (wet)). This highly conductive polymer membrane also exhibits stability in alkaline water electrolysis at room temperature, a property that makes qPPO an interesting and potentially translational material for the design of hydroxide-based electrochemical cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据