4.8 Article

Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water

期刊

CHEMISTRY OF MATERIALS
卷 26, 期 8, 页码 2659-2668

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm5004164

关键词

-

资金

  1. Commission for Technology and Innovation (CTI) from Switzerland [9725.1]

向作者/读者索取更多资源

In this work, we report the facile synthesis of hydrophobic, flexible, and ultralightweight (rho(sponge) <= 17.3 mg/cm(3)) nanocellulose sponges using a novel and efficient silylation process in water. These functional materials with high porosity (>= 99%) are easily engineered by freeze-drying water suspensions of nanofibrillated cellulose (NFC), a natural nanomaterial isolated from renewable resources, in the presence of methyltrimethoxysilane sols of various concentrations. Microscopic and solid state nuclear magnetic resonance analyses reveal that the sponges are composed of a three-dimensional cellulosic network of thin sheets and nanofilaments, covered by polysiloxanes. Compared with conventional inorganic porous materials, the silylated NFC sponges display an unprecedented flexibility with a maximal shape recovery corresponding to 96% of the original thickness after 50% compression strain. The sponges also combine both hydrophobic and oleophilic properties and prove to be very efficient in removing dodecane spills from a water surface with an excellent selectivity and recyclability. Finally, the sponges can collect a wide range of organic solvents and oils with absorption capacities up to 100 times their own weight, depending on the density of the liquids. This versatile functionalization method opens up new opportunities for the design of novel advanced functional biomaterials with controlled properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据