4.8 Article

Sodium Distribution and Reaction Mechanisms of a Na3V2O2(PO4)2F Electrode during Use in a Sodium-Ion Battery

期刊

CHEMISTRY OF MATERIALS
卷 26, 期 11, 页码 3391-3402

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm5005104

关键词

-

资金

  1. Ministerio de Educacion y Ciencia [MAT2010-19442]
  2. Gobierno Vasco/Eusko Jaurlaritza [Etortek CICEnergigune-10, SAIO-TEK-12-ENERGIBA, IT570-13]
  3. AINSE Ltd.
  4. University of Basque Country [UFI11/53]

向作者/读者索取更多资源

Ambient temperature sodium-ion batteries are emerging as an exciting alternative to commercially dominant lithium-ion batteries for larger scale stationary applications. In order to realize such a sodium-ion battery, electrodes need to be developed, understood, and improved. Here, Na3V2O2(PO4)(2)F is investigated from the perspective of sodium. Reaction mechanisms for this cathode during battery function include the following: a region comprising at least three phases with subtly varying sodium compositions that transform via two two-phase reaction mechanisms, which appears at the lower potential plateau-like region during both charge and discharge; an extended solid solution region for majority of the cycling process, including most of the higher potential plateau; and a second two-phase region near the highest charge state during charge and between the first and second plateau-like regions during discharge. Notably, the distinct asymmetry in the reaction mechanism, lattice, and volume evolution on charge relative to discharge manifests an interesting question: Is such an asymmetry beneficial for this cathode? These reaction mechanisms are inherently related to sodium evolution, which shows complex behavior between the two sodium crystallographic sites in this compound that in turn mediate the lattice and reaction evolution. Thus, this work relates atomic-level sodium perturbations directly with electrochemical cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据