4.8 Article

Ultrathin Lithium-Ion Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-Ion Batteries

期刊

CHEMISTRY OF MATERIALS
卷 26, 期 10, 页码 3128-3134

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm500512n

关键词

-

资金

  1. Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]
  2. Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences

向作者/读者索取更多资源

Ultrathin conformal coatings of the lithium ion conductor, lithium aluminum oxide (LiAlO2), were evaluated for their ability to improve the electrochemical stability of LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochemical impedance spectroscopy confirmed the ion conducting character of the LiAlO2 films. Complementary simulations of the activation barriers in these layers match experimental results very well. LiAlO2 films were subsequently separately deposited onto LiNi0.5Mn1.5O4 and graphite electrodes. Increased electrochemical stability was observed, especially in the full cells, which was attributed to the role of the coatings as physical barriers against side reactions at the electrode-electrolyte interface. By comparing data from full cells where the coatings were applied to either electrode, the dominating failure mechanism was found to be the diffusion of transition metal ions from the cathode to the anode. The LiNi0.5Mn1.5O4/graphite full cell with less than 1 nm LiAlO2 on the positive electrode exhibited a discharge capacity of 92 mAh/g at C/3 rate. The chemical underpinnings of stable performance were revealed by soft X-ray absorption spectroscopy. First, both manganese and nickel were detected on the graphite electrode surfaces, and their oxidation states were determined as +2. Second, the ultrathin coatings on the anode alone were found to be sufficient to significantly reduce this deleterious process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据