4.8 Article

Degradation Mechanisms of Platinum Nanoparticle Catalysts in Proton Exchange Membrane Fuel Cells: The Role of Particle Size

期刊

CHEMISTRY OF MATERIALS
卷 26, 期 19, 页码 5540-5548

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm501867c

关键词

-

资金

  1. Fuel Cell Technologies Office of the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy
  2. DOE, Office of Science Laboratory [DE-AC02-06CH11357]

向作者/读者索取更多资源

Five membrane-electrode assemblies (MEAs) with different average sizes of platinum (Pt) nanoparticles (2.2, 3.5, 5.0, 6.7, and 11.3 nm) in the cathode were analyzed before and after potential cycling (0.6 to 1.0 V, 50 mV/s) by transmission electron microscopy. Cathodes loaded with 2.2 and 3.5 nm catalyst nanoparticles exhibit the following changes during electrochemical cycling: (i) substantial broadening of the size distribution relative to the initial size distribution, (ii) presence of coalesced particles within the electrode, and (iii) precipitation of submicron-sized particles with complex shapes within the membrane. In contrast, cathodes loaded with 5.0, 6.7, and 11.3 nm size catalyst nanoparticles are significantly less prone to the aforementioned effects. As a result, the electrochemically active surface area (ECA) of MEA cathodes loaded with 2.2 and 3.5 nm nanoparticle catalysts degrades dramatically within 1000 cycles of operation, while the electrochemically active surface area of MEA cathodes loaded with 5.0, 6.7, and 11.3 nm nanoparticle catalysts appears to be stable even after 10 000 cycles. The loss in MEA performance for cathodes loaded with 2.2 and 3.5 run nanoparticle catalysts appears to be due to the loss in electrochemically active surface area concomitant with the observed morphological changes in these nanoparticle catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据