4.8 Article

Cu2ZnGeS4 Nanocrystals from Air-Stable Precursors for Sintered Thin Film Alloys

期刊

CHEMISTRY OF MATERIALS
卷 26, 期 19, 页码 5482-5491

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm501393h

关键词

-

资金

  1. Flexible Electronics Theme of the Future Manufacturing Flagship as part of Office of the Chief Executive Postdoctoral Fellowships
  2. Australian Research Council [DP110105341]
  3. Discovery Early Career Research Award
  4. Australian Synchrotron, Victoria, Australia [AS131/PD/5694]

向作者/读者索取更多资源

The synthesis of an air and moisture stable germanium complex and its use in the synthesis of ternary and quaternary copper containing nanocrystals (NCs) is described. Through the use of H-1-/C-13 nuclear magnetic resonance and Fourier transform infrared spectroscopies, thermogravimetric analysis, and powder X-ray diffraction, the speciation and chemistry of this precursor is elucidated. This germanium source is employed in the gram scale, noninjection synthesis of Cu2ZnGeS4 (CZGeS) and Cu2GeS3 (CGeS) NCs using a binary sulfide precursor approach. To demonstrate the versatility of such NCs for fabricating thin films suitable for high-efficiency optoelectronic devices, they are blended with Cu2ZnSnS4 (CZTS) NCs and selenized to form homogeneously alloyed Cu2ZnSnxGe1-xSySe4-y (CZTGeSSe) thin films. The structural, optical, and electronic properties of such thin films are studied using X-ray diffraction, scanning electron microscopy, UV-vis-NIR spectroscopy, and photoelectron spectroscopy in air. These measurements demonstrate collectively that incorporating Ge into micrometer-sized, tetragonal Cu2ZnSnSxSe4-x (CZTSSe) provides a facile manner in which the conduction band energy can be readily tuned. The strategy developed herein provides a pathway to controlled levels of Ge incorporation in a single step process, thus avoiding the need for intra-alloyed Cu2ZnSnxGe1-xS4 nanocrystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据