4.8 Article

Production of Molybdenum Trioxide Nanosheets by Liquid Exfoliation and Their Application in High-Performance Supercapacitors

期刊

CHEMISTRY OF MATERIALS
卷 26, 期 4, 页码 1751-1763

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm500271u

关键词

-

资金

  1. ERC grant SEMANTICS
  2. SFI [11/PI/1087, PI_10/IN.1/I3030]
  3. EU [266391]

向作者/读者索取更多资源

Here, we demonstrate a simple method to exfoliate layered molybdenum trioxide (MoO3) crystallites to give multilayer MoO3 nanosheets dispersed in solvents. Exfoliation is achieved by sonicating MoO3 powder in the presence of suitable solvents followed by centrifugation to remove undispersed material. This procedure works well in a range of solvents with Hildebrand solubility parameters close to 21 MPa1/2 and is consistent with the predictions of classical solubility theory. We have fully optimized this process and demonstrated methods to separate the resultant nanosheets by size. Raman spectroscopy suggests the exfoliation process does not damage the MoO3. This is supported by measurements showing that the reaggregated nanosheets display very similar photoluminescence to bulk MoO3. However, the dispersed nanosheets had distinctly different photoluminescence, indicating a decoupling of the monolayers on exfoliation. We have used liquid-exfoliated MoO3 to prepare supercapacitor electrodes that have relatively low capacitance (similar to 2 F/g at 10 mV/s) because of the low electrical conductivity of the MoO3. However, addition of carbon nanotubes beyond the percolation threshold yielded a 100-fold increase in capacitance. Some MoO3/nanotube composites displayed a capacitance as high as 540 F/g at 0.1 mV/s. This is the first example of solvent exfoliation of a layered metal oxide. We believe this work opens the way to liquid exfoliation of a wide range of layered compounds, leading to an array of new solution-processed 2D materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据