4.8 Article

Methane Decomposition and Carbon Growth on Y2O3, Yttria-Stabilized Zirconia, and ZrO2

期刊

CHEMISTRY OF MATERIALS
卷 26, 期 4, 页码 1690-1701

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm404062r

关键词

-

资金

  1. FWF (Austrian Science Foundation) [F4503-N16]

向作者/读者索取更多资源

Carbon deposition following thermal methane decomposition under dry and steam reforming conditions has been studied on yttria-stabilized zirconia (YSZ), Y2O3, and ZrO2 by a range of different chemical, structural, and spectroscopic characterization techniques, including aberration-corrected electron microscopy, Raman spectroscopy, electric impedance spectroscopy, and volumetric adsorption techniques. Concordantly, all experimental techniques reveal the formation of a conducting layer of disordered nanocrystalline graphite covering the individual grains of the respective pure oxides after treatment in dry methane at temperatures T >= 1000 K. In addition, treatment under moist methane conditions causes additional formation of carbon-nanotube-like architectures by partial detachment of the graphite layers. All experiments show that during carbon growth, no substantial reduction of any of the oxides takes place. Our results, therefore, indicate that these pure oxides can act as efficient nonmetallic substrates for methane-induced growth of different carbon species with potentially important implications regarding their use in solid oxide fuel cells. Moreover, by comparing the three oxides, we could elucidate differences in the methane reactivities of the respective SOFC-relevant purely oxidic surfaces under typical SOFC operation conditions without the presence of metallic constituents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据