4.8 Article

Mechanochemical Reaction Cascade for Sensitive Detection of Covalent Bond Breakage in Hydrogels

期刊

CHEMISTRY OF MATERIALS
卷 26, 期 23, 页码 6771-6776

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm503253n

关键词

-

资金

  1. University of Colorado

向作者/读者索取更多资源

A novel strategy is reported for sensing chemical bond breakage in hydrogels at low levels of mechanical stress using a mechanochemical reaction cascade to generate fluorescence. Hydrogels are promising substrates and frameworks for cell growth and tissue engineering, particularly for cardiovascular repair and cartilage replacement. For these applications, it is important to maintain careful control over gel mechanical properties so that these hydrogels not only match the properties of the desired tissue for replacement but also retain their integrity for extended periods. Since the failure of hydrogels begins with the breakage of cross-links within the structure, methods are needed to sense these initial events for monitoring the performance of implants. In this work, it was hypothesized that nonspecific covalent bond breakage would produce radicals that would react with water to produce reactive oxygen species, which in turn could activate fluorophores sensitive to these. A series of multiarm poly(ethylene glycol) hydrogels were synthesized with a variety of cross-links of different bond dissociation energies. It was found that gels loaded with the masked fluorophore 3'-(p-aminophenyl) fluorescein became fluorescent during compression, even with as little as 5 kPa of pressure. The effect of compression on fluorescence activation was found to depend primarily on the strength of the cross-linking functional group. Future studies include utilizing this system to image mechanical variability in heterogeneous gel structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据