4.8 Article

Controlling Growth of Ultrasmall Sub-10 nm Fluorescent Mesoporous Silica Nanoparticles

期刊

CHEMISTRY OF MATERIALS
卷 25, 期 5, 页码 677-691

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm303242h

关键词

silica nanoparticles; theranostic nanocarrier

资金

  1. NSF [MPS/DMR-1008125]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1008125] Funding Source: National Science Foundation

向作者/读者索取更多资源

Mesoporous silica nanoparticles (MSNs) have recently attracted a lot of interest for future nanotheranostic applications because of their large surface-area and high biocompatibility. However, studies to date of MSNs are confined to >10 nm particle sizes which may result in unfavorable biodistribution characteristics for in vivo experiments and hence limit their clinical applications. Here we provide a full account of a synthesis approach to ultrasmall sub-10 nm mesoporous silica nanoparticles with narrow size distributions and homogeneous porous particle morphology. Key features enabling this structure control are (i) fast hydrolysis, (ii) slow condensation, and (iii) capping of particle growth by addition of a PEG-silane at different time-points of the synthesis. Variation of synthesis conditions including monomer/catalyst concentrations, temperature, and time point of PEG-silane addition leads to synthesis condition particle structure correlations as mapped out by a combination of results from data analysis of dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements Results establish precise control over average particle diameter from 6 to 15 nm with increments below 1 nm. Solid state nuclear magnetic resonance (NMR) measurements, zeta-potential measurements, and thermogravimetric analysis (TGA) were conducted to reveal details of the particle surface structure. Long-term particle stability tests in deionized (DI) water and phosphate buffered saline (PBS) 1X buffer solution were performed using DLS demonstrating that the PEGylated particles are stable in physiological environments for months. Fluorescent single pore silica nanoparticles (mC dots) encapsulating blue (DEAC) and green (TMR) dyes were synthesized and characterized by a combination of DLS, TEM, static optical spectroscopy, and fluorescence correlation spectroscopy (FCS) establishing probes for multicolor fluorescence imaging applications. The ultraprecise particle size control demonstrated here in particular for sizes around and below 10 nm may render these particles an interesting subject for further fundamental studies of porous silica particle formation mechanisms as well as for sensing, drug delivery, and theranostic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据