4.8 Article

Synthesis and Characterization of Porous Benzimidazole-Linked Polymers and Their Performance in Small Gas Storage and Selective Uptake

期刊

CHEMISTRY OF MATERIALS
卷 24, 期 8, 页码 1511-1517

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm300407h

关键词

carbon dioxide capture; hydrogen storage; gas separation; porous polymers; natural gas purification

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0002576]
  2. U.S. Department of Energy (DOE) [DE-SC0002576] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Porous organic polymers containing nitrogen-rich building units are among the most promising materials for selective CO2 capture and separation which can have a tangible impact on the environment and clean energy applications. Herein we report on the synthesis and characterization of four new porous benzimidazole-linked polymers (BILPs) and evaluate their performance in small gas storage (H-2, CH4, CO2) and selective CO2 binding over N-2 and CH4. BILPs were synthesized in good yields by the condensation reaction between aryl-o-diamine and aryl-aldehyde building blocks. The resulting BILPs exhibit moderate surface area (SA(BET) = 599-1306 m(2) g(-1)), high chemical and thermal stability, and remarkable gas uptake and selectivity. The highest selectivity based on initial slope calculations at 273 K was observed for BILP-2: CO2/N-2 (113) and CO2/CH4 (17), while the highest storage capacity was recorded for BILP-4: CO2 (24 wt % at 273 K and 1 bar) and H-2 (2.3 wt % at 77 K and 1 bar). These selectivities and gas uptakes are among the highest by porous organic polymers known to date which in addition to the remarkable chemical and physical stability of BILPs make this class of material very promising for future use in gas storage and separation applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据