4.8 Article

Chemical Deposition and Stabilization of Plasmonic Copper Nanoparticle Films on Transparent Substrates

期刊

CHEMISTRY OF MATERIALS
卷 24, 期 13, 页码 2501-2508

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm300699f

关键词

Cu; Cu2O; nanocrystals; localized plasmon; localized surface plasmon resonance (LSPR); benzotriazole; corrosion inhibition; electroless deposition

资金

  1. Israel Science Foundation [1251/11]
  2. Minerva Foundation
  3. Federal German Ministry for Education and Research

向作者/读者索取更多资源

Preparation of supported copper nanostructures has been scarce, compared to the more noble metals Ag and Au, mainly due to the lower stability of Cu toward corrosion in aqueous solutions and oxidation in air, either during or after preparation. Still, as a markedly inexpensive metal, Cu might present an attractive substance, if suitable Cu nanoparticle (NP) deposition and stabilization methods could be developed. Here, we present the first case of glass substrates coated with Cu or Cu2O NPs using wet chemical deposition (CD), performed under well-defined conditions optimized for obtaining each of the two nanoparticulate deposits. Cu NP films were also obtained by chemical reduction of the Cu2O NP films, thereby achieving improved size uniformity. The Cu NP films display a prominent surface plasmon (SP) band in the visible range. The dependence of the SP absorbance on the local dielectric environment is shown to provide a useful tool for monitoring Cu NP corrosion processes and their inhibition. Stabilization of the Cu NP films by treatment with the corrosion inhibitor benzotriazole (BTAH), shown here for the first time, enabled study of the films' plasmonic properties, such as their refractive index sensitivity (RIS), a basic property in sensing applications. The measured RIS values are similar to those of typical gold NP films. Introduction of an effective, low-cost, and scalable method for the preparation of stable supported Cu and Cu2O NP films may open the way to a variety of plasmonic and other applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据