4.8 Article

Synthesis of Ligand-Stabilized Silicon Nanocrystals with Size-Dependent Photoluminescence Spanning Visible to Near-Infrared Wavelengths

期刊

CHEMISTRY OF MATERIALS
卷 24, 期 2, 页码 393-401

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm2032866

关键词

silicon nanocrystals; hydrogen silsesquioxane; HSQ; size determination; small-angle X-ray scattering; SAXS; Scherrer analysis; X-ray diffraction; XRD; transmission electron microscopy; TEM

资金

  1. National Science Foundation [0618242]
  2. Robert A. Welch Foundation [F-1464]
  3. Natural Science and Engineering Research Council of Canada
  4. MEXT [3 NIM-08F-001]
  5. National Science Foundation NNIN [ECCS-0335765]

向作者/读者索取更多资源

We report a chemical route to colloidal silicon (Si) nanocrystals, or quantum dots, with widely tunable average diameter, from less than 3 nm up to 90 nm and peak photoluminescence (PL) from visible wavelengths to the bulk band gap of Si at 1100 nm. The synthesis relies on the high temperature (>1100 degrees C) decomposition of hydrogen silsesquioxane (HSQ) to obtain Si quantum dots with good crystallinity and a narrow size distribution with tunable size embedded in SiO2. The oxide matrix is removed by hydrofluoric acid etching in the dark. Subsequent thermal hydrosilylation with alkenes yields free, solvent-dispersible Si nanocrystals with bright PL. The relationship between PL energy and size, exhaustively characterized by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and X-ray diffraction (XRD), is reported.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据