4.8 Article

Controlling the Microstructure of Solution-Processable Small Molecules in Thin-Film Transistors through Substrate Chemistry

期刊

CHEMISTRY OF MATERIALS
卷 23, 期 5, 页码 1194-1203

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm102834m

关键词

organic electronics; thin-film transistors; grazing-incidence X-ray diffraction; transmission electron microscopy; FTIR; TESADT; crystal habits; morphology

资金

  1. Office of Naval Research

向作者/读者索取更多资源

Solution-processable small molecules have tremendous potential in macroelectronics applications by providing both high charge carrier mobility and low cost processing. Fluorinated 5,11-bis(triethylsilylethynl) anthradithiophene enables high performance thin film transistors due, in part, to a self-patterning process where crystals grow from chemically tailored contacts and bridge the transistor channel. This paper outlines a detailed microstructural study that identifies the crystallization mechanisms of the self-patterning. Two crystal habits are observed: we find that crystals on chemically modified electrodes predominantly form (001) oriented platelets while untreated surfaces form a fine mixture of (001) and (111) oriented crystals. For (001) oriented platelets, the (010) fast growth face lies in the plane of the film and allows extended growth from platelets nucleated on the electrode into the transistor channel. The in-plane charge carrier mobility of the (001) platelets is high; short channel lengths, crystal growth fronts from adjacent electrodes bridge the channel gap, resulting in the excellent device performance. On untreated surfaces between devices, the low charge carrier mobility, finely mixed state provides self-isolation for stable device operation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据