4.8 Article

Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode

期刊

CHEMISTRY OF MATERIALS
卷 23, 期 5, 页码 1105-1112

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm1019469

关键词

tungsten oxide (WO3); photoanode; oxygen evolution catalyst; electrodeposition; solar energy conversion; photocurrent; photocorrosion

资金

  1. Center for Chemical Innovation of the National Science Foundation [CHE-0802907]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [0802907] Funding Source: National Science Foundation

向作者/读者索取更多资源

A bare WO3 electrode and a WO3 electrode coupled with a layer of Co-Pi oxygen evolution catalyst (OEC) were prepared to investigate the effect of Co-Pi OEC on the selectivity of photo-oxidation reactions and photostabilities of WO3 photoanodes. WO3 photoanodes have been reported to produce peroxo species as well as O-2 during photooxidation reactions, and the accumulation of peroxo species on the surface is known to cause a gradual loss of photoactivity of WO3. The photocurrent to O-2 conversion efficiencies of the WO3 and WO3/Co-Pi OEC electrodes were obtained by simultaneously measuring the photocurrent and O-2 gas generated during illumination at 0.8 V vs Ag/AgCl. The result shows that the presence of OEC increases the photocurrent to O-2 conversion efficiency from approximately 61% to approximately 100%. The complete suppression of peroxo formation provided the WO3/Co-Pi OEC photoelectrode with long-term photostability. The photocurrent-potential characteristics show that the presence of OEC effectively reduces the electron-hole recombination near the flat band potential region and shifts the onset potential of photocurrent by 0.17 V to the negative direction. However, when the applied potential became more positive than approximately 0.35 V vs Ag/AgCl, the WO3/Co-Pi OEC electrode produced less initial photocurrent than the bare WO3 electrode. Mott-Schottky plots reveal the presence of interface states at the WO3/OEC junction that induce more electron hole recombination when the Fermi level moves below these states. Regardless of the adverse effect on recombination present at 0.8 V vs Ag/AgCl, the WO3/Co-Pi OEC achieved a more efficient and sustainable solar to O-2 conversion owing to the ability of Co-Pi OEC to significantly increase the photocurrent to O-2 conversion efficiency and prevent the photocurrent decay of the WO3 electrode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据