4.8 Article

Understanding the Improvement in the Electrochemical Properties of Surface Modified 5 V LiMn1.42Ni0.42Co0.16O4 Spinel Cathodes in Lithium-ion Cells

期刊

CHEMISTRY OF MATERIALS
卷 21, 期 8, 页码 1695-1707

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm9000043

关键词

-

资金

  1. U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

The 5 V spinel cathode LiMn1.42Ni0.42Co0.16O4 with cation disorder in the 16d octahedral sites has been surface modified with 2 wt % nanosize Al2O3, ZnO, Bi2O3, and AlPO4 by an electrostatic self-assembly method. The bare and surface-modified samples have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (TEM), charge-discharge measurements in lithium cells, electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). The surface-modified samples exhibit better cycling performance, better rate capability, and better rate capability retention during cycling compared to the bare sample. EIS and XPS studies show that the inferior electrochemical performances of the bare LiMn1.42Ni0.42Co0.16O4 are closely related to the formation of thick solid-electrolyte interfacial (SEI) layer at the high operating voltages of similar to 5 V. Surface modifications with nanosize Al2O3, ZnO, Bi2O3, and AlPO4 suppress the formation of thick SEI layers on LiMn1.42Ni0.42Co0.16O4 and thereby improve the electrochemical performances significantly. Moreover, the differences in the surface compositions formed during the annealing or electrochemical cycling processes also influence the electrochemical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据