4.8 Article

Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery

期刊

CHEMISTRY OF MATERIALS
卷 21, 期 19, 页码 4724-4730

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm902050j

关键词

-

资金

  1. Oak Ridge National Laboratory [S08-027]
  2. U.S. Department of Energy

向作者/读者索取更多资源

We report herein a hierarchically structured sulfur-carbon (S/C) nanocomposite material as the high surface-area cathode for rechargeable lithium batteries. A porous carbon with a uniform distribution of mesopores of 7.3 nm has been synthesized through a soft-template synthesis method. The potassium hydroxide activation of this mesoporous carbon results in a bimodal porous carbon with added microporosity of less than 2 nm to the existing mesopores without deterioration of the integrity of the original mesoporous carbon. Elemental sulfur has been loaded to the micropores through a solution infiltration method. The resulted S/C composites with various loading level or sulfur have a high surface areas and large internal porosities. These materials have been tested as novel cathodes for Li/S batteries. The results show that the cyclability and the utilization of sulfur in the Li/S batteries have been significantly improved. The large internal porosity and Surface area of the micromesoporous carbon is essential for the high utilization of sulfur.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据